Stainless Steel AISI 316L Powder

Share This Post

Stainless steel AISI 316L powder is a highly versatile material used across various industries for its excellent corrosion resistance, mechanical properties, and weldability. This article provides a comprehensive overview of 316L stainless steel powder covering its properties, production methods, applications, suppliers, costs, installation, operation, and maintenance.

Overview of stainless steel aisi 316l powder

Stainless steel 316L powder is a variation of grade 316 stainless steel that contains low carbon content to minimize carbide precipitation during welding. The ‘L’ denotes the lower carbon content compared to standard 316 steel. The composition is provided below:

Table 1: Chemical composition of stainless steel 316L powder

Element Weight %
Iron (Fe) Balance
Chromium (Cr) 16-18
Nickel (Ni) 10-14
Molybdenum (Mo) 2-3
Manganese (Mn) ≤ 2
Silicon (Si) ≤ 1
Carbon (C) ≤ 0.03
Phosphorus (P) ≤ 0.045
Sulfur (S) ≤ 0.03
Nitrogen (N) ≤ 0.1

The key highlights of 316L stainless steel are:

  • Excellent corrosion resistance comparable to 316 grade steel
  • Improved weldability and reduced sensitization effects
  • Can be readily welded without preheating
  • Withstands pitting and crevice corrosion in harsh environments
  • High strength and hardness retention at elevated temperatures
  • Easily fabricated into various parts using powder metallurgy
  • Non-magnetic austenitic structure

316L powder provides the same advantages of bulk 316L alloy in powder form suitable for additive manufacturing or powder metallurgy parts production. The fine powder morphology allows complex net shape components to be produced without extensive machining.

Table 2: Physical properties of 316L stainless steel powder

Properties Unit 316L SS
Density g/cm3 7.9
Melting point °C 1375-1400
Thermal conductivity W/m-K 16.3
Electrical resistivity μΩ-cm 72
Modulus of elasticity GPa 193
Poisson’s ratio 0.30
Specific heat capacity J/g-°C 0.50

Production Methods for stainless steel aisi 316l powder

316L stainless steel powder can be produced using the following methods:

Table 3: Production methods for 316L stainless steel powder

Method Description Characteristics
Gas atomization Molten steel stream broken into fine droplets and rapidly solidified by inert gas Spherical powder, good flowability, high purity
Water atomization Molten steel stream broken into droplets by high pressure water jet Irregular powder, high oxygen content
Plasma atomization Molten steel stream atomized into finer droplets by plasma torch Very fine spherical powder, alloyed compositions
Mechanical alloying Elemental/prealloyed powders milled to achieve alloy composition Irregular powder, contamination risk
Electrolysis Aqueous electrolytic process to deposit alloy powder Dendritic powder, high purity
Metal injection molding Fine powders mixed with binders and injection molded Control over shape and size

Gas atomization is preferred for additive manufacturing applications due to the spherical morphology and smooth surface of powders. Mechanical alloying and electrolysis methods allow custom alloy compositions to be produced. The powder production method controls characteristics like particle shape, size distribution, flowability, purity, and microstructure.

stainless steel aisi 316l powder

Applications of stainless steel aisi 316l powder

Some major applications of 316L stainless steel powder include:

Table 4: Applications of 316L stainless steel powder

Industry Applications
Aerospace Engine components, fittings, fasteners, brackets
Automotive Valves, pistons, exhaust components, clamps, springs
Chemical Pipes, vessels, pumps, valves, flanges, fittings
Oil & gas Downhole tools, drill collars, wellhead parts,christmas trees
Medical & dental Implants, surgical instruments, prosthetics
Food processing Vessels, tubing, valves, fittings, fasteners
Marine Propeller shafts, diesel engine parts, deck equipment
Additive manufacturing Aerospace, automotive, medical parts production

The key drivers for using 316L powder are corrosion resistance, ability to withstand prolonged exposure to acids, solvents, salts, or chlorides, high temperature stability, and biocompatibility for medical implants and devices. Components made using 316L powder metallurgy also have isotropic properties unlike wrought or cast alloys.

Specifications for stainless steel aisi 316l powder

316L powder used in various applications must conform to material and process specifications as below:

Table 5: 316L stainless steel powder specifications

Parameter Specification
Alloy grade 316L per ASTM A240
Particle shape Predominantly spherical
Particle size 15-45 microns
Apparent density > 90% of theoretical density
Tap density ≥ 4 g/cm3
Flow rate ≤ 25 s/50 g
Carbon content ≤ 0.03 wt%
Oxygen content ≤ 0.1 wt%
Nitrogen content ≤ 0.1 wt%
Hydrogen content ≤ 0.015 wt%
Surface oxide Thin passivating layer
Microstructure Austenitic, equiaxed grains

The particle size distribution depends on the intended application method like laser powder bed fusion, binder jetting, or metal injection molding. Finer particle sizes allow higher resolution but poorer flowability.

Design Considerations for stainless steel aisi 316l powder

Various design factors must be considered when designing components from 316L powder:

Table 6: 316L powder component design considerations

Parameter Recommendations
Wall thickness ≥ 1 mm for laser-based AM
Surface finish Dependent on AM process, may need post machining
Tolerances ± 0.1-0.3% with AM, higher for powder metallurgy
Orientation Build direction can affect properties
Supports Required in AM, minimize overhangs
Hole features ≥ 1 mm diameter, avoid blind holes
Internal channels ≥ 1 mm width, avoid long unsupported spans
Embossed/engraved text ≥ 1 mm height, avoid fine details
Sharp corners Round with 1 mm radius

The component design must account for limitations of the specific additive manufacturing process to be used and facilitate post-processing like hot isostatic pressing, heat treatment, surface finishing, etc. Design optimizations like lattices, lightweighting, and consolidations should also be evaluated.

Suppliers and Costs of stainless steel aisi 316l powder

Some leading global suppliers of 316L stainless steel powder include:

Table 7: 316L stainless steel powder suppliers

Company Location Production Methods
Sandvik Sweden Gas atomization
Carpenter Technology USA Gas atomization
Praxair USA Gas atomization
Höganäs Sweden Water atomization
CNPC Powder China Gas atomization

Table 8: 316L stainless steel powder price range

Powder grade Particle size Price range
316L 15-45 microns $50-$120/kg
Plasma atomized 316L 15-45 microns $80-$250/kg
Gas atomized 316L 5-15 microns $100-$500/kg

Prices vary based on particle size distribution, production method, purity levels, supplier, and purchase volume. Plasma atomized and finer gas atomized powders command higher prices due to precise control over powder characteristics.

Installation of 316L Powder Based Components

The installation process for 316L powder based components depends on the manufacturing process:

Table 9: 316L powder component installation methods

Method Installation Procedure
Additive manufacturing Post-processing like supports removal, stress relieving, machining before installation
Powder injection molding Debinding, sintering, and finishing before installation
Powder metallurgy Compaction, sintering, finishing, inspection prior to installation

Components may require joining to other parts or additional welding in place. The corrosion resistance, strength levels, and design conformance must be verified prior to installation. Proper joint design, sealants, fasteners, gaskets, and isolation pads should be utilized as needed. Personnel must follow applicable safety procedures for handling, lifting, and installing metallic parts.

Operation and Maintenance of 316L Parts

316L powder components should be operated as per design specifications to ensure performance reliability:

Table 10: 316L powder component operation guidelines

Parameter Recommendations
Operating temperature Up to 700°F for prolonged service
Pressure rating ~20,000 psi
Loads Within design load limits
Thermal cycles Avoid excessive thermal fatigue conditions
Corrosive exposure Avoid prolonged exposure to chlorides >150°F

Routine maintenance is advised:

  • Inspect for damage, cracks, wear
  • Check for leaks, OD corrosion, deposits
  • Test mechanical integrity
  • Clean surfaces, remove deposits
  • Lubricate moving parts

Replacement may be needed in case of powder degradation, embrittlement, fatigue, or other failure modes. Personnel must exercise caution when handling failed powder metallic components due to fracture, debris, or other hazards.

stainless steel aisi 316l powder
PREPed Metal Powders

How to Select a Reliable 316L Powder Supplier

Buyers should evaluate 316L powder suppliers on the following aspects:

Table 11: Guidelines for selecting 316L powder supplier

Parameter Recommendations
Powder manufacturing capabilities Advanced gas atomization or plasma capacity
Powder certification ISO 9001, AS9100 quality system
Testing capabilities Particle size, morphology, chemical analysis
Inventory and lead times Stock availability for quick delivery
Technical expertise Metallurgy and powder production knowledge
Customer service Responsive sales and technical support
Pricing Competitive pricing for required grade and particle size
Logistics Capable of timely domestic/international delivery

Reputable suppliers like Sandvik, Carpenter, Praxair with decades of powder experience should be preferred. The buyer must evaluate if the supplier can consistently provide 316L powder meeting their specifications at a reasonable cost.

Pros and Cons of 316L Stainless Steel Powder

Table 12: Advantages and limitations of 316L stainless steel powder

Advantages Limitations
Excellent corrosion resistance Expensive compared to carbon steel powder
Outperforms 304 grade powder Lower strength than precipitation hardening alloys
Improved weldability over 316 powder Subject to pitting and crevice corrosion
High temperature oxidation resistance Requires post-processing after AM build
Can be readily welded and fabricated Limited supplier and alloy availability
Biocompatible for medical implants Poor creep rupture strength
Powder metallurgy allows complex shapes Difficult to cut and machine in hardened state
Near net shape parts from AM Lower fatigue strength than wrought product

For critical applications, buyers must evaluate if the superior corrosion resistance, weldability, and biocompatibility justify the higher cost over other stainless, tool steel, cobalt, or nickel-based powders grades. Component testing is recommended to verify 316L powder parts meet design requirements.

stainless steel aisi 316l powder

Stainless Steel 316L Powder – Frequently Asked Questions (FAQ)

Q: What is the difference between 316 and 316L stainless steel powder?

A: 316L powder has lower carbon content (0.03% max) than 316 powder (0.08% max) to provide better weldability and corrosion resistance.

Q: What are the alternatives to 316L powder?

A: Alternatives include 304L, 317L for weldability; 904L, 254SMO, AL-6XN for corrosion resistance; and 17-4PH, 15-5PH for high strength.

Q: What powder size is best for laser melting 316L powder?

A: 15-45 micron powder is recommended for most laser powder bed fusion applications to balance flowability and resolution.

Q: What are the typical impurities in 316L stainless steel powder?

A: Impurities can include oxygen, nitrogen, hydrogen, sulfur, carbon, silicon, manganese, chromium, nickel, molybdenum, copper, cobalt.

Q: What post processing is required for additively manufactured 316L parts?

A: Post processing includes supports removal, stress relieving, HIP, machining, grinding, polishing, passivation, and testing.

Q: What are common applications for 316L powder?

A: Marine hardware, chemical processing equipment, oil & gas tools, medical implants, aerospace engine parts, food processing equipment.

Q: Does 316L powder require hot isostatic pressing?

A: HIP helps improve densification, reduce porosity, and enhance mechanical properties of AM 316L parts but is not always mandatory.

Q: Is 316L stainless steel powder susceptible to corrosion?

A: 316L has excellent corrosion resistance but is still susceptible to pitting and crevice corrosion from prolonged chloride exposure above 60°C.

Q: What is the typical surface finish of as-built 316L AM parts?

A: Surface roughness (Ra) values of 10-25 microns are common for AM 316L parts. Post-processing can improve this <1 micron if needed.

know more 3D printing processes

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore

Effect of heat treatment on microstructure and mechanical properties of LPBF CuCrZr

CuCrZr (C18150) alloy is a precipitation-hardening alloy known for its high mechanical, thermal, and electrical properties. The alloy is widely used in heat exchange devices and in the field of nuclear fusion.   CuCrZr alloy is a very attractive alloy that can replace pure copper in many applications, with Cr in the range of 0.5

10 Essential Steps for Effective Tungsten Prep: Unlocking the Potential of Tungsten for Industries

1. Introduction Tungsten is a highly versatile and valuable metal that finds application in various industries due to its exceptional properties. However, before tungsten can be effectively utilized, it requires proper preparation to ensure its quality, performance, and reliability. In this article, we will explore the concept of tungsten prep, its importance in different industries,

pt_BRPortuguese
Rolar para cima