Spherical Titanium Powder

Share This Post

Introduction of spherical titanium powder

Spherical titanium powder is a form of pure titanium powder with a spherical morphology and controlled particle size distribution. It offers excellent flowability, mixability, and consistency which makes it suitable for advanced metal manufacturing processes across industries.

Composition and Characteristics

Table 1: Composition and Key Characteristics of Spherical Titanium Powder

Parameter Details
Chemical Composition >99% Titanium. Remaining trace elements like Nitrogen, Oxygen, Carbon, Hydrogen.
Particle Shape Highly spherical morphology
Particle Size Range Typically 15-45 microns
Flowability Excellent due to spherical shape
Apparent Density Around 2.7 g/cm3
Tap Density Up to 73% solid titanium density i.e. ~4 g/cm3

The precise particle size distribution, oxygen and nitrogen content, flow rates and tap density can be customized as per application requirements.

Manufacturing Process

Spherical titanium powder is manufactured through advanced methods that involve melting titanium feedstock, atomizing and rapidly solidifying droplets into highly spherical powder particles:

  • Plasma Atomization uses high energy plasma torches and inert gas jets
  • Electrode Induction Gas Atomization (EIGA) relies on induction melted electrodes
  • Rotating Electrode Process (REP) generates molten metal streams from tips of spinning titanium electrodes

The key is rapid solidification in an inert atmosphere which results in purity and spherical morphology. Post-production sieving and classification leads to strict fractions.

spherical titanium powder

spherical titanium powder Applications and Uses

The unique properties of spherical titanium powder make it suitable for:

Table 2: Major Applications of Spherical Titanium Powder

Area Applications
Additive Manufacturing 3D printing implants, aerospace components via DMLS, SLM, EBM
Powder Metallurgy Pressing and sintering to make titanium automotive and aircraft parts
Investment Casting Injection molds and tooling manufacture
Biomedical Porous structures for bone grafts
Pigments and Catalysts Chemical and plastics industry

The high purity, flowability, mixability and consistency of particle size distribution allows reliable high-performance use across powder-based manufacturing processes like metal 3D printing.


Spherical titanium conforms to specifications like ASTM B988 and ASTM F3049. Typical values are:

Table 3: Typical Specifications of Spherical Titanium Powder

Parameter Specification
Particle Size 15-45 microns
Oxygen Content <0.20%
Nitrogen Content <0.05%
Hydrogen Content <0.015%
Tap Density Up to 4 g/cm3
Flow Rate >25 s/50 g
Particle Size Distribution D10 > 20 microns; D90 < 63 microns

Customization of properties like tap density, flow rates, oxygen and nitrogen content is possible based on application requirements.

Price of spherical titanium powder

Table 4: Spherical Titanium Powder Price Ranges of Key Suppliers

Supplier Price Per Kg
Advanced Powders & Coatings $100–$200
AP&C $90–$180
TLS Technik GmbH & Co $120–$250
Sandvik Osprey $80–$220

Prices depend on order volumes, grades, and customization needs. High purity grades for medical uses are premium priced. Recycled powder can cost 50% less but has lower and inconsistent quality.

Comparison With Alternatives

Table 5: Pros and Cons of Spherical Titanium Powder

Pros Cons
Excellent flowability and spreadability Higher cost than alloy variants
Mixes without segregation Limited global suppliers, scarce supply
Allows high density AM printed parts Reactive, requires inert handling
Isotropic properties Post-processing like HIP is a must
Highest strength-to-weight ratio Lacks niche alloy properties

Despite higher costs, spherical titanium powder enables lighter and stronger titanium components across aerospace, automotive, medical, and general engineering domains – applications where properties like corrosion resistance and biocompatibility are vital.

spherical titanium powder


What role does particle shape play in metal AM processes?

Spherical shape leads to uniform and dense powder layers during additive manufacturing methods like SLM and DMLS to minimize porosity in printed titanium parts. This results in higher mechanical strength.

How is full density achieved for sintered titanium parts?

Hot Isostatic Pressing (HIP) post-treatment on sintered titanium compacts is vital to eliminate internal pores and voids and achieve full theoretical density. This maximizes strength.

Are there health hazards associated with handling titanium powder?

Like most fine metal powders, handling precautions are vital as titanium powder can be reactive, explosive or cause skin/respiratory sensitization. Use of argon gloves boxes, protective equipment is recommended.

know more 3D printing processes

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore

18 Fascinating Facts About EBM Technology

Introduction to EBM Technology In the fast-paced world of manufacturing and engineering, technological advancements are revolutionizing the way products are made. One such groundbreaking technology is Electron Beam Melting (EBM). This article delves into the world of EBM technology, exploring its principles, applications, advantages, challenges, and its impact on various industries. We will also discuss

13 Innovations in Metal Powder Atomization

Introduction In the realm of modern manufacturing and engineering, the demand for high-quality metal powders has surged due to the rapid growth of industries like aerospace, automotive, and electronics. Metal powder atomization has emerged as a groundbreaking technique to produce finely divided, spherical metal particles with exceptional properties. This article delves into the world of

Scroll to Top