Iron Titanium Powder

Share This Post

Iron titanium powder is an engineering material composed of iron and titanium that offers a unique combination of outstanding properties. This in-depth guide covers all key aspects of iron titanium powder – from metallurgy and composition, to critical properties, processing methods, and typical applications across major industries.

Overview of Iron Titanium Powder

Iron titanium powder, sometimes referred as FeTi or iron-titanium alloys, is composed mainly of iron (Fe) and titanium (Ti) metals. It is produced in powder form through specialized atomization processes.

Key attributes that make iron titanium an excellent functional material include:

  • Extremely soft magnetic properties
  • High saturation induction
  • Good temperature stability
  • Low coercivity
  • High resistivity
  • Low eddy current losses
  • Excellent oxidation and corrosion resistance

Its unique properties enable usage in electromagnetic, electronic, and electric power applications where high inductance, low losses, stability and strength matter.

Composition of Iron Titanium Powder

MaterialWeight % Range
Iron (Fe)40% – 60%
Titanium (Ti)Balance

Availability in various iron-to-titanium ratios along with tight powders size distributions allows precise tuning to application requirements.

iron titanium powder

Properties of Iron Titanium Powder

Understanding key properties aids in materials selection for different operating conditions.

Physical and Mechanical Properties

PropertyTypical Value
Density4.3 – 5.0 g/cm3
Young’s Modulus120-160 GPa
Poission Ratio~0.32
Tensile Strength250-450 MPa
Compressive Strength500-650 MPa

Thermal and Electrical Properties

PropertyTypical Value
Electrical Resistivity70-90 μΩ.cm
Thermal Conductivity15-25 W/m.K
Curie Temperature350°C
Saturation Induction1.7-2.2 T

Chemical Resistance Properties

Excellent resistance to:

  • Oxidation and corrosion
  • Acids and alkalis
  • Organic solvents
  • Humidity and moisture
  • High temperatures

This versatility supports use in harsh application environments.

Processing Methods for Iron Titanium Powder

Iron titanium powder is manufactured using water atomization methods. The process involves:

  1. Induction melting iron and titanium under vacuum
  2. Pouring the molten alloy stream into high pressure water jets
  3. Rapid solidification into fine spherical powders
  4. Screening to tight size distributions
  5. Annealing for optimal magnetic properties

Precise control over production parameters like melt stream flow rate, water pressure, temperature and atomizing nozzle design allows tailoring powder characteristics.

Typical Size Distribution

Iron titanium powders are available from very fine to coarse particle sizes:

Mesh SizeMicrometers
-63520 μm
-32540 μm
-100150 μm
-50300 μm

Both standard and custom particle sizes are possible to meet requirements.

Iron Titanium Powder Applications

Key applications taking advantage of iron titanium’s special material properties include:

Electromagnetic Applications

  • Solenoid cores
  • Linear motor armatures
  • Actuators
  • Magnetic bearings
  • Inductors and chokes

Electronic Applications

  • Noise suppression sheets
  • EMI/RFI shielding
  • Antenna cores
  • Flyback transformers
  • Switching power supplies

Electric Motor Applications

  • Motor laminations
  • Rotating machinery
  • Generator rotor sleeves
  • Ultra efficient motors
  • Traction motors

Emerging Application Spaces

  • Wireless charging
  • Electric vehicles
  • Renewable energy
  • Smart grid infrastructure
  • Defense and aerospace

Both new and mature industries continue finding new ways to implement iron titanium powder in their most demanding components and sub-systems.

Specifications and Grades

Understanding powder characteristics enables proper material selection.

Typical Specifications

Composition40-60% Fe , Balance Ti
Particle ShapeSpherical
Apparent Density2.5-3.5 g/cm3
Tap Density3.5-4.5 g/cm3
Hausner Ratio<1.25
Flow Rate15-25 s/50g
Particle Hardness250-450 HV

Iron Titanium Powder Grades

FT-1X~Fe-50Ti : General purpose
FT-2X~Fe-40Ti: High induction
FT-3X~Fe-60Ti: Improved stability
FT-4XClient specified

Grades enable balancing magnetic performance, temperature ratings, and cost for intended operating environments.

Suppliers and Pricing

As an engineered advanced material, connecting with specialized suppliers is key to sourcing high performance iron titanium powder.

Leading Iron Titanium Powder Manufacturers & Suppliers

AMFUnited States
Hitachi MetalsJapan
Vacuumschmelze GmBH (VAC)Germany

Price Ranges

Powder GradePrice per Kg
FT-1X$55 – $120
FT-2X$95 – $180
FT-3X$135 – $250
FT-4XQuoted case-by-case

Pricing varies based on order volumes, particle size distribution, composition targets, and purity levels.

Pros vs Cons of Iron Titanium Powder

Understanding key trade-offs against alternatives aids selection.

Extremely high saturation inductionLower tensile strength than silicon steels
Temperature stable propertiesBrittle material behavior
Corrosion and oxidation resistantSusceptible to hydrogen embrittlement
Wide range of permeabilities availableRequires protective atmosphere processing
Lower cost than amorphous and nanocrystallinesMore expensive than ferrites

For most electromagnetic and electric machine applications, the profoundly soft magnetic behavior at excellent efficiency outweighs the mechanical limitation – making this a material of choice over a range of competing options.

iron titanium powder


Q: Is iron titanium powder compatible with 3D printing?

A: Yes, iron titanium powder can be used in binder jetting and other metal additive manufacturing processes to fabricate complex soft magnetic components without facing limitations of conventional manufacturing.

Q: What is the difference between iron titanium and vanadium iron titanium?

A: Adding a small amount of Vanadium (V) enhances temperature stability further by raising the Curie point. However the saturation magnetization drops slightly. Evaluate trade-offs for the operating environment.

Q: Can iron titanium be drawn into wire?

A: While challenging, specialized wire drawing processes with appropriate lubricants allows creation of ultra-thin iron titanium wire for niche applications. Reduce area reductions per pass and anneal regularly.

Q: Is iron titanium affected by cryogenic temperatures?

A: No, iron titanium maintains consistent magnetic behavior and mechanical integrity without becoming brittle or altered down to extremely cold cryogenic temperatures – making it suitable for special low temperature applications.


With its extremely soft magnetic properties, high induction, temperature stability and excellent corrosion resistance, iron titanium powder provides unique capabilities unmatched by any competing material. It enables next-generation electric machines and power electronic systems to reach groundbreaking dimensions of efficiency, power density and reliability. This technical guide serves as a starting point when evaluating if iron titanium is the right solution for your electromagnetic or electronic design needs. Please connect with an engineering material expert for further insights and assistance tailoring powder characteristics to your exacting application requirements.

know more 3D printing processes

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore

18 Fascinating Facts About EBM Technology

Introduction to EBM Technology In the fast-paced world of manufacturing and engineering, technological advancements are revolutionizing the way products are made. One such groundbreaking technology is Electron Beam Melting (EBM). This article delves into the world of EBM technology, exploring its principles, applications, advantages, challenges, and its impact on various industries. We will also discuss

13 Innovations in Metal Powder Atomization

Introduction In the realm of modern manufacturing and engineering, the demand for high-quality metal powders has surged due to the rapid growth of industries like aerospace, automotive, and electronics. Metal powder atomization has emerged as a groundbreaking technique to produce finely divided, spherical metal particles with exceptional properties. This article delves into the world of

Scroll to Top